Isomorphism invariants for actions of sofic groups

نویسنده

  • Lewis Bowen
چکیده

For every countable group G, a family of isomorphism invariants for measurepreserving G-actions on probability spaces is defined. In the special case in which G is a countable sofic group, a special class of these invariants are computed exactly for Bernoulli systems over G. This leads to a complete classification of Bernoulli systems for many countable groups including all finitely generated linear groups. These results are combined with recent rigidity results of S. Popa to obtain classification results for Bernoulli shifts over special classes of groups G up to von Neumann equivalence and/or orbit equivalence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topological Entropy and the Variational Principle for Actions of Sofic Groups

Recently Lewis Bowen introduced a notion of entropy for measure-preserving actions of a countable sofic group on a standard probability space admitting a generating partition with finite entropy. By applying an operator algebra perspective we develop a more general approach to sofic entropy which produces both measure and topological dynamical invariants. We establish the variational principle ...

متن کامل

Entropy and the Variational Principle for Actions of Sofic Groups

Recently Lewis Bowen introduced a notion of entropy for measure-preserving actions of a countable sofic group on a standard probability space admitting a generating partition with finite entropy. By applying an operator algebra perspective we develop a more general approach to sofic entropy which produces both measure and topological dynamical invariants, and we establish the variational princi...

متن کامل

Soficity, Amenability, and Dynamical Entropy

In a previous paper the authors developed an operator-algebraic approach to Lewis Bowen’s sofic measure entropy that yields invariants for actions of countable sofic groups by homeomorphisms on a compact metrizable space and by measure-preserving transformations on a standard probability space. We show here that these measure and topological entropy invariants both coincide with their classical...

متن کامل

Krieger’s Finite Generator Theorem for Actions of Countable Groups Iii

We continue the study of Rokhlin entropy, an isomorphism invariant for p.m.p. actions of countable groups introduced in Part I. In this paper we prove a non-ergodic finite generator theorem and use it to establish subadditivity and semi-continuity properties of Rokhlin entropy. We also obtain formulas for Rokhlin entropy in terms of ergodic decompositions and inverse limits. Finally, we clarify...

متن کامل

On the Number of Universal Sofic Groups

If CH fails, then there exist 2 א0 universal sofic groups up to isomorphism.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008